Regression Models for Count Data Based on the Negative Binomial(p) Distribution
نویسندگان
چکیده
منابع مشابه
Estimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملRegression Models for Count Data in R
The classical Poisson, geometric and negative binomial regression models for count data belong to the family of generalized linear models and are available at the core of the statistics toolbox in the R system for statistical computing. After reviewing the conceptual and computational features of these methods, a new implementation of hurdle and zero-inflated regression models in the functions ...
متن کاملAllocation models for DMUs with negative data
The formulas of cost and allocative efficiencies of decision making units (DMUs) with positive data cannot be used for DMUs with negative data. On the other hand, these formulas are needed to analyze the productivity and performance of DMUs with negative data. To this end, this study introduces the cost and allocative efficiencies of DMUs with negative data and demonstrates that the introduc...
متن کاملOn Hinde-Demetrio Regression Models for Overdispersed Count Data
In this paper we introduce the Hinde-Demétrio (HD) regression models for analyzing overdispersed count data and, mainly, investigate the e¤ect of dispersion parameter. The HD distributions are discrete additive exponential dispersion models (depending on canonical and dispersion parameters) with a third real index parameter p and have been characterized by its unit variance function + p. For p ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata
سال: 2014
ISSN: 1536-867X,1536-8734
DOI: 10.1177/1536867x1401400203